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Mission Introduction 
•  Aquarius retrieves sea-surface 

salinity (SSS) by measuring 
sea surface brightness 
temperature by using a very 
stable radiometer in L-band. 

•  The biggest error to this 
measurement is due to the sea 
surface roughness.   

•  A co-pointing scatterometer is 
used to accurately measure the 
sea surface roughness (to be 
removed by ground 
processing) 

•  The spacecraft (Service 
Platform, S/P) is built by 
CONAE (Argentina) 

•  Aquarius is the prime 
instrument on SAC-D, a joint 
NASA/CONAE mission 

•  The radiometer is built by 
GSFC 

•  Remainder of instrument is 
built/managed by JPL 

•  Launch planned for End of 
2010 

Land 
Surface Roughness 

WOA 2001 
NOAA/
NODC 
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Aquarius Instrument Overview 
•  Sea surface brightness temperature 

measured by stable polarimetric 
radiometers operating at 1.413 GHz 
(first three Stokes parameters). 

•  Coincident sea surface backscattering 
cross-section measured by stable 
polarimetric scatterometer operating 
at 1.26 GHz (HH, VV, HV, VH). 

•  Deployable offset parabolic monolithic 
reflector with three feedhorns provides 
three beams in a push-broom 
configuration. 

•  Technical resource allocations: 
–  Mass: 375 kg 
–  Power: 375 W 

•  Aquarius science requirement is to 
provide a systematic global Sea 
Surface Salinity map 

–  150 km Spatial Resolution 
–  0.2 psu Monthly Accuracy 
–  Three Year Baseline Mission 
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Observatory Configuration 

2.5-m Dia 
Reflector 

Primary 
Structure 

Bipod 
(1 of 3) 

Stowed Configuration 

AQ Station       0 
SAC-D Station 2540 

Delta 7320-10 C Fairing 
Station location in mm  

AQ Station 2382 
SAC-D Station 4922 

SAC-D Station       0 

Deployed Configuration 

Sunshade 

OMT Assembly 
(1 of 3) 

Boom 
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The Aquarius Instrument 

Aquarius instrument in deployed state at JPL.  Fiber glass 
support struts hold the reflector when deployed in gravity 
environment. 

Aquarius instrument in deployed state at JPL.  Reflector 
suspended by Gravity Off-Load Fixture (GOLF) 



page 6 
    November 18, 2009 

Aquarius Cal/Val, CEOS SAR 2009 
Adam Freedman, JPL 

Aquarius Radar is Not a SAR 

•  Aquarius scatterometer radar is not a SAR! 
•  Aquarius scatterometer is a simple, “bit-bucket”, receiver 
•  No ranging or phase requirements, just precise measurement of 

received power 
–  No range compression, caltone, Doppler processing 

•  Only real aperture needed (low spatial resolution for ocean) 
•  No adaptive gain, time-dependent range, or adjustable PRF 

–  Two calibrated attenuation settings for echo, two for loopback, 4 dB 
offset, changed by ground command 

–  Receive window delays and widths adjustable by ground command 
•  Low PRF of 100 Hz, Long Tx pulse of 1 millisecond (due to 

radiometer measurement requirements), 4 MHz Tx chirp 
–  No range or azimuth ambiguities 

•  Both radar and radiometer: primary calibration is for relative 
stability in the measured polarimetric power 
–  Tight EMI requirements, high RFI sensitivity 
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Key Design Challenges 
•  Very challenging science stability requirements: 

–  Radiometer stability requirement: 0.13 kelvin over 7 days, orbits 
–  Scatterometer stability requirement: 0.1 dB over 7 days, orbits 

•  Resulting in very challenging thermal stability requirements: 
–  0.1 deg.C rms for front end RF electronics 
–  0.4 deg.C rms for back end RF electronics 
–  Additional thermal requirements over seasonal periods 

•  Driving the design into the following features: 
–  Need for Active Thermal Control in sensitive components zones 
–  High thermal isolation between sensitive components and zones 
–  Internal calibration sources for the Radiometer 
–  Loop-back calibration for the Scatterometer 
–  Many thermal sensors are distributed inside the sensitive electronics 

and on the structure in order to enable loss vs temp. corrections. 
–  Built in scatterometer test mode for stability requirement verification 

•  Ground calibration challenges 
–  Resolve absolute biases, and drifts over 7 days, seasonal fluctuations 



page 8 
    November 18, 2009 

Aquarius Cal/Val, CEOS SAR 2009 
Adam Freedman, JPL 

Instrument Block Diagram 
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Pre-Launch Calibration Approach 

CND Phase Balance 

T/V Calibration Test: 
-  Loss vs. temp 
-  Cal source output vs. temp 
-  Linearity coefficients  

2-port S-parameters 

Coupler: 
-  Loss vs. temp 
-  S-parameters 

Feed/OMT Loss and Loss vs. 
Temp Analysis 

OMT with coupler test: 
-  Loss vs. temp (verif) 
-  Phase stability vs. temp 
-  Cross-pol stability 

Reflector Coupon Loss vs. temp 

Antenna Scale model test 

Antenna range  verification test 

Feed/OMT S-Parameters 

Scatterometer component level test 
(loss vs. temp) 

Scatterometer TVAC  
FODLstability test 

Subsystem Level  Calibration 
Component Higher Assembly 
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System Level  Calibration 

R5 T/V system level  
radiometric 
calibration verification 

TVAC FODL Scatterometer 
 stability test 

Calibration Data  
Package 

Antenna temperature calibration  
model and coefficients 

Polarimetric calibration  
model and coefficients 

Antenna Pattern calibration 

Scatterometer calibration values  
and coeffcients 

Mechanical alignment angles Instrument antenna/feed  
mechanical alignment 

R3 Ambient “Through he feed”  
Measurement. 

(Solid box = calibration test.  Striped box = Calibration validation test.) 
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Radiometer calibration model 

L2aT2a L1,hT1 L2bT2b L4hT4h L3hT3h L5hT5h L6hT6h 

T0,v 
Ref Load 

Temp 
T0,h 

Switch 
+ 

TCN,v  
Noise  
TCN,h 

L6vT6v L5vT5v L4vT4v L3v T3v L2aT2a L1,vT1 

TAA Diplexer 
+cables 

OMT 
Coupler 

OMT loss 
+cables 

Feed 
Horn 

Reflector 
Switch 
& coupler 

L2bT2b 

Thermal  
Isolator 

MOMT 

Zone 4 Zone 3 Zone 2 Zone 1 

T’’A 
Feedhorn 
Input 
Reference 

T’’Ao 
Feedhorn 
Output 

+ 

+ 

T’A 
Radiometer SS 
Reference 
Plane Input 

T’’Af 
OMT Output 

TA 
RFE Input 

TND,v  
Noise  
TND,h 

S(ant) 

S(rad) 

+ 

+ 

Trv 
Rad Noise 

Temp 
Trh 

+ 

Ti 
Internal 
Calibration 
Plane 

MCND 

T’Af 
Antenna 
Feed SS 
Output 

Z-mismatch Zone 5 Zone 6 

L#,v,h Losses for zone # and polarization v or h 
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M Mueller matrix 
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Radiometer 2H   

Radiometer 1H (shows offset)   

Start Tx mode end Tx mode 

Radiometer 3V showing target heating 
(only beam3 is transmitting)   

Radiometer 1V  
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Radiometer offset when scat Tx with absorber target 
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•  Thermal stability is key to 
instrument stability 

•  Active thermal control 
architecture is distributed in 
order to optimize instrument 
mass and power resources: 
–  Proportional Integral micro-

controller housed with digital 
electronics.  Closes a 
software algorithm loop to 
match sensor temperature 
to commanded setpoint. 

–  Analog voltage regulator 
control loop compensates 
for bus voltage variations, to 
increase power efficiency 

–  Analog heater modules 
located near the sensitive 
electronics 

–  Each of the 4 thermal 
control zones circuits are 
independent and have 
redundant ADCs and control 
sensors. 

Micro-controller Analog to Digital 
Converter 

Temperature 
sensor 

Pulse-width 
Modulation 
Loop control 

Voltage 
regulator 

Spacecraft 
Bus voltage Heater 

module 

Temperature controlled 
zone 

Resides in APDU 

Resides in ICDS 

Active Thermal Control 

OMT


RFE


Couplers
 Diplexers


CND


Heater Module


OMT Radiator
 Control

temp sensor
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Scatterometer Accuracy Required For 0.12 K TB Uncertainty
Le and Yueh, 2004, Model
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Predicted Scatterometer Performance, Ref Model
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Expected Reference Model Performance for Kpc 

Kpc from radar design 
Blue line represents 0.03 K TB error 
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Aquarius Scatterometer Block Diagram  
Key Calibration Components 
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Scatterometer Stability Testing 

To  
Antenna L-band 

Chirp 

Diplexer 

Loop-Back 
attenuator 

Power 
Amp. 

Low-noise 
amp Down-converter 

Fc= 4 MHz 
BW = 4 MHz 
To ADC 

Temperature 
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modulator 
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Scatterometer simplified block diagram 

To  
Radiometer 

• Special FODL test mode: 
Timing accelerated 18x 
• Residual thermal drift:  
~0.1 dB / 7°C 
• Subsystem testing 
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Scat Stability With Expected Thermal Perturbations 

•  Drift less than 0.1 dB over several orbits 
•  Orbit period 98 minutes 
•  Amplifier heater cycling 7 minutes 
•  Instrument T/Vac testing 
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Science Calibration 

•  Science ground calibration is challenging 
–  No corner reflectors, transponders, point targets 
–  RFI common at L band 
–  High accuracy stability requirements (0.1 dB, 0.1 K) 

•  Instrument intracomparisons 
–  Cross-over comparisons 
–  Inter-beam comparisons 
–  Polarization comparisons 

•  Geophysical references 
–  Land/ocean interfaces 
–  Vicarious ocean calibration 
–  Antarctica: Dome C 
–  Amazon rain forest 
–  Quiet, stable ocean 
–  Cold sky calibration (radiometer) 
–  In situ salinity, ocean roughness 
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Summary 
•  The Aquarius instrument completed the integration and 

test campaign in the Spring, was shipped to Argentina 
for integration with the spacecraft over the next 2-3 
months, with planned launch at end of 2010. 

•  Elaborate thermal vacuum test, simulating worst case 
thermal environment variations in orbit (eclipse 
season), verified that the radiometer and scatterometer 
meet their stability requirements. 

•  Key design features contributing to this success: 
–  Active thermal control in combination with passive thermal 

design ensures <0.4° C stability. 
–  High RF isolation and thermally stable RF components 
–  Internal RF calibration paths 
–  Scatterometer test mode enabling the use of a stable fiber 

optic delay line to route the transmitted chirp back into the 
receiver, for round-trip stability verification. 
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BACKUP 
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Instrument Summary 1 
KEY ORBIT PARAMETERS 

Parameter 
Observatory Orbit Altitude (km) 657 (655-685 km) 

Orbit Inclination (deg) 98.0 (sun-synchronous) 
Orbit Equatorial Crossing 

Ground-track repeat interval 
KEY INSTRUMENT PARAMETERS 

Parameter Radiometer Scatterometer 
Frequency (MHz) ~1413 1260 

Band Width (MHz) ≤ 26 4 
Swath Width (km) 407 373 

Polarization Th, Tv, T+45, T-45 HH, HV, VV, VH 
PRF (Hz) 100 100 

No. Measurements Per Second 58.3 5.6 
Transmitter Power (W) 200 - 250 

Transmit Pulse Length (ms) 1 
Pulse Integration Time (ms) ~9 ~1.6 

A/D (# bits) 12 
Data Rate (kbits/sec) 11.0 2.1 

Measurement Integration Time (s) 6 6 Key Parameters 
Dynamic Range (K,  s 0 ) <5 K to 1400 K 0 dB to -40 dB 6/20/05 

Value 

6:00 PM ascending 
7 days, 103 orbits 



page 23 
    November 18, 2009 

Aquarius Cal/Val, CEOS SAR 2009 
Adam Freedman, JPL 

Instrument Summary 2 

KEY ANTENNA PARAMETERS

Parameter
Antenna (off-nadir pointing angle of 33°)

Feedhorns
Radiometer Scatterometer

Parameter Inner beam Middle beam Outer beam Inner beam Middle beam Outer beam
Look Angle (deg) 25.8 33.8 40.3 25.9 33.9 40.3

Azimuth Angle (deg) 9.8 -15.3 6.5 9.7 -15.3 6.5
Average 3 dB Beam Width (deg) 6.1 6.3 6.6 6.5 / 4.7 * 6.7 / 4.8 * 7.1 / 5.1 *

Beam Efficiency (%) 94.0 92.4 90.4 89.9 87.6 85.4
Peak Gain (dBi) 29.1 28.8 28.5 28.5 28.1 27.7

Gain Stability (K, dB) 0.11 0.11 0.11 0.04 0.04 0.04
Peak Cross-Pole Gain (dBi) 6.5 8.6 10.3 6.3 8.4 10.1

* one-way / two-way 3 dB beam widths

KEY MEASUREMENT PARAMETERS/REQUIREMENTS

Radiometer Scatterometer
Parameter Inner beam Middle beam Outer beam Inner beam Middle beam Outer beam

Incidence Angle (deg) 28.7 37.8 45.6 28.8 37.9 45.5
Footprint Size (3 dB one-way, two-way) 94 x 76 120 x 84 156 x 97 71 x 58 91 x 65 122 x 74
Noise-Equivalent Sigma-0 (dB, pulse) -29 -26 -24

Stability (K, dB) 0.12 0.12 0.12 0.13 0.13 0.13
Radar Sensitivity  (dB) 0.04 0.06 0.1

Radiometer Sensitivity (NEDT, K) 0.06 0.06 0.06
Power Sensitivity (after integration) (dBm) -137 -137 -137 -119 -126 -127

3 feeds, 50 cm diam, equilateral triangle about focus

Value
2.5 m diameter, offset parabola (2.5 x 2.9 linear dimension)

Note for reference: 0.1 K error for a 100 K TB = 0.1 % => 0.004 dB error 
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Single Channel Kpc Performance
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This plot illustrates the expected 
single-channel Kpc performance of 
the Baseline instrument design, 
along with a proposed Level 3 
AIRD requirement incorporating 
about 50% margin. 
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Level 1 ATBD (Radiometric Calibration) 


